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AXIALLY SYMMETRIC WAVE PROPAGATION IN A
TWO-LAYERED CYLINDER*

J. S. WHITTIER and J. P. JONES

Aerospace Corporation, El Segundo, California

Abstract—The linear theory of elasticity is used to investigate axially symmetric wave propagation in an infinitely
long two-layered cylinder. Each material is taken to be homogeneous and isotropic. A perfect bond is assumed
at the interface, while the inner and outer boundaries of the composite cylinder are treated as traction-free. The
dispersion determinant relating phase velocity and wave number for a harmonic train of waves satisfying these
boundary conditions is presented. The character of the dispersion equation is investigated analytically and numeri-
cally. Stress and displacement distributions are also presented for the numerical example. Comparisons are made
with an approximate solution of the same problem obtained by means of a thin shell theory incorporating thick-
ness-shear deformation of each layer.

NOTATION
a radius of the interface
A, B, C,D arbitrary constants
c phase velocity, w/k
E Young’s modulus
H hy+h,
hy, h, thickness of outer and inner layer, respectively
i +J-1
I, Ko, I, K, modified Bessel functions of the first and second kind

Jo. No, J1, Ny Bessel functions of the first and second kind
wave number
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1. INTRODUCTION

IN recent years considerable attention has been focused on multilayered shells. Often a
sandwich-type construction is used to lighten the weight of a shell structure; in other

* This research was supported by the U.S. Air Force under Contract No. AF 04(695)-469.
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instances, a protective layer is bonded to a shell as, for example, in the case of a re-entry
vehicle heat shield or a rocket nozzle liner. Two-layered thick shell configurations are
also used in solid propellant rocket motors.

This study employs the linear theory of élasticity and treats the propagation of a train
of waves in an infinitely long, two-layered cylinder; each layer is homogeneous and iso-
tropic. Computations based on this solution are used in an assessment of the accuracy of
an approximate two-layered shell theory that was presented recently [1]. This latter theory
included the effects of shear deformation and rotatory inertia.* In [1], a partial comparison
is made between the shell theory and the solutions obtained in the present work using the
linear theory of elasticity. Dispersion curves were compared in detail, and a few displace-
ment distribution comparisons were made. The present work gives detailed displacement
comparisons over a larger frequency and wave number regime and also presents stress
distribution comparisons.

The propagation of waves in cylindrically bounded media has been extensively investiga-
ted. Although most of the work has been limited to cylinders of a single material, it is of
interest to recall a few of the more pertinent references. Pochhammer [2] and Chree [3]
first formulated the problem for solid cylindrical bars. Ghosh [4] formulated the problem
for hollow cylindrical bars but presented no calculations. Later, Gazis [ 5-7] and Greenspon
[8,9] made extensive numerical calculations for the vibrations of a hollow cylinder and
compared them with several approximate shell theories such as those of Herrmann and
Mirsky [10-12] and Naghdi and Cooper [13, 14]. Other investigators include Bird [15]
and Bird et al. [16].

The vibrations of a multilayered cylinder using the equations of the linear theory of
elasticity have not been extensively investigated. Baltrukonis et al. [17] treated simple
thickness-shear vibrations of a two-layered cylinder, and McNiven et al. [18] treated
propagation of axially symmetric waves in solid bars with an outer finite layer. Other than
these, the authors know of no other references treating multilayered cylinders by the linear
theory of elasticity.

Layered half-planes have been extensively treated by geophysicists [19], but their work
is not particularly of interest here since geophysical earth models always have one infinite
layer. Of the plane two medium problems with finite layers, the symmetrical sandwich
two-dimensional beam is treated by Saito and Sato [20], and the asymmetrical two-layered
counterpart is treated by Jones [21]. The last reference is especially apropos since it is
shown here that the wave propagation solution of the two-layered cylinder problem degen-
erates into the solution of the plane two layered medium problem when the wavelength
becomes sufficiently small compared to the thickness.

The present analysis is formulated in terms of displacement potentials. A solution in
the form of an infinite train of axially symmetric waves is assumed. To satisfy boundary
conditions the phase velocity (or frequency) must depend on wave number in such a way
that an eighth-order determinant vanishes. Due to its complexity little analytical progress
can be made with this dispersion determinant except in special cases. However, for infinitely
long waves the determinant reduces to a product of two fourth-order determinants whose
frequency roots correspond to vibrations with either purely axial or purely radial motion.
Alternatively, for very short waves the determinant reduces to a form given previously by
Jones [21] for a plane two-layered medium. Here the phase velocity roots correspond to

* For a more extensive bibliography dealing with the thin shell literature of layered shells see [1].



Axially symmetric wave propagation in a two-layered cylinder 659

Rayleigh waves on the free surfaces and a possible Stoneley wave at the interface.* For
waves of intermediate length, roots of the dispersion determinant are found numericaily
with a digital computer program described herein. Displacement and stress distributions
corresponding to these roots are also found for a specific numerical example, and these are
used to estimate the accuracy of the previously mentioned shell theory.

It is concluded that a Timoshenko-type shell theory gives good agreement with the
present exact solution in a region of applicability encompassing low enough frequencies
and large enough wavelengths. It appears that to extend this region of applicability one
must use a shell theory incorporating thickness-stretch motion. On the basis of the displace-
ments obtained from the exact theory, a linear distribution of radial motion does not appear
to be an unreasonable first approximation for a thickness-stretch theory.

2. ANALYSIS

Consider a doubly infinite hollow cylinder composed of two homogeneous, isotropic,
elastic media with Lamé constants 4,, u,, 4,, and p, and densities p, and p,, where subscript
1 refers to the outer layer and subscript 2 refers to the inner layer. The cylinders are perfectly
bonded together at the interface. Cylindrical coordinates r, 6, and z are employed. The
interface radius is denoted by qa, and the thicknesses are h, and h,.

Written in terms of the potential functions ¢ and ¥ the equations of elasticity for
motions with torsionless axial symmetry are

1 1
V2¢ = &'E(b,na VY = PIP,N (1)

where the displacements and stresses may be generated from the potential functions by

Ug = O, u, = ¢,r+lP,rz’ w = ¢,z*—i'(rlp,r),r (2)
1
G, = x(;¢,,+¢,,,+¢,,,) +2u(e,.+¥,.), 3)
1
G,, = ﬂ(2¢,rz+\y,zz_q’,rr_;\PJ) - (4)
1 1
G, = A(; ¢.r+¢,rr+¢,zz )+ 2,“ |:¢,zz_;(r\y,rz),rj|‘ (5)

The terms u and w are the radial and axial displacements, respectively, and o,,, 5,,, and o_,
are the stress components. The expression for 4 is omitted since it is not essential to the
problem. All other stress components are zero and o and § are the dilatational and equi-

voluminal wave speeds defined by

A+2u
a? = ——, p* ==
(6)

* A Stoneley wave may or may not exist at an interface depending on the elastic properties and densities of
the two media ({19], p. 113).
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Equations (1--5) hold in either layer provided appropriate values of a, f, 4 and u are used.
If a Rayleigh train of waves is assumed, then all quantities are considered to vary as

w = w(r)e’*=" g, =g, (r)e® ",  etc (7
and the solution to equations (1) is (the factor ¢'**~ " has been suppressed for compactness)

¢ = Aly(ker)+ BK y(ker)

8)
k¥ = Cly(kdr)+ DK y(kdr). (
Here I, and K, are modified Bessel functions of the first and second kind and zeroth order.*
The solutions equation (8) hold in either medium provided the parameters appropriate
to each medium are used in the equations. Thus there will be two sets of ¢’s and §’s:

c? c?
8%:1—7, 8%=1——2
21 a3 9
2 Cz 52 CZ ( )
6 = 1——, =1
' pi : 3
where
2
= % (10)

Also there will be two sets of constants 4, A, and B, B,, etc., to be determined by
application of boundary conditions on o,,, 6,,, %,, and w. Expressing the displacements
and stresses in terms of the solutions, equation (8), one obtains

2 = kz{ [A(l + 6% o(ker) — 262 M} +B|:(1 +67)K o(ker) + 262 wj] }
K ker ker

(11)
+2k?62 {C ,:I olkdr)— —-—I‘(kér)} +D [Ko(kér) + K 1(]“5’)} }

kor kor
% = 2ik?¢[ AI (ker)— BK ,(ker)] + ik28[ C(1 + 6*)I ,(kér)— D(1 + 52)K L(kdr)] (12)

u, = k[ Ael |(ker)— BeK (ker)+ Cd1 ,(kdr)— DS K (kor)] (13)
w = ik[ Al (ker)+ BK o(ker)+ C8*1(kdr) + DS*K o(kdr)]. (14)

The above expressions are valid in each region provided appropriate values of A;, B;,
C;,D;, ¢, 0;, ufi = 1, 2) are used.
The boundary conditions for the free vibration problem are

* Obviously, when ¢ or § are imaginary, the appropriate analytic continuations of the I and K functions must
be used, as given in [24].
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N\

oMV =0¢'=0 at r=a+h,
P =0P=0 at r=a—h,
and ( 19

1 2 1 2 1y __,@2
Gir) = C’ir), o(rz) = a(rz), u( )= u( )

wh = w? at r=aq. )

The superscripts indicate quantities in medium 1 or 2. From the boundary condition,
equation (15), one obtains with the aid of equations (11-14) eight linear homogeneous
equations for the eight constants 4, ... D,. Since the equations are long and their formula-
tions are straightforward, the equations are presented in the Appendix rather than in the
text.

To assure nontrivial values of 4,, By,..., C,, D,, the determinant of their coefficients
must be set equal to zero. This constitutes the dispersion equation. The determinant is as
shown in equation (16) on page 662: where, for brevity, the quantities P,,... W,, are
expressions containing Bessel functions and are defined in the Appendix.

The determinant, equation (16), is so complicated that little can be done to obtain any
general analytical results.* However, simpler forms of the determinant are obtainable
for the limiting cases of very long and very short waves.

For infinite wavelengths, i.e, k = 0, the solutions, equation (8), become independent
of z, and the determinant degenerates to the product of two fourth-order determinants.
A more straightforward derivation of these fourth-order determinants involves repeating
the calculations with the z dependence excluded from the outset. Then it is clear that one
of the fourth-order determinants corresponds to purely radial motions while the other
corresponds to purely axial motions.

Equating the radial motion determinant to zero one obtains the frequency equation
for simple thickness-stretch vibrations as shown in equation (17) on page 663: where
Jo, No,J1, N; are Bessel functions of the first and second kinds of orders zero and one,
respectively.

Equating the axial motion determinant to zero one obtains the frequency equation for
axial shear vibrations

[Bl(a+h1):| N[B1a+h)i| 0 0
w o« KBy ( ) BBy ( )
Jl e n 1
(ﬂ1a Nl(ﬁ1a) ﬂlﬁzJ B2 #1ﬂ2N1 ﬁz
=0. (18)
w
JO(Ea No(%a) JO(%a No(%a
0 D
0 [ﬂz(a hz):l Nll:ﬁz(a h2i|

Equation (18) has been obtained by Baltrukonis et al. [17].

* As was suggested by a referee, the frequency determinant equation (16) does not directly reduce to the fre-
quency equation given in [18] due to the singular behavior of certain Bessel functions appearing in (16).
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For very short wavelengths compared to the interface radius of the cylinder, it would be
expected that propagation of axially symmetric waves in a two-layered cylinder would
differ very little from propagation of straight crested waves in a plane two-layered medium
at least for a thin cylinder. The truth of this supposition can be shown analytically in
equation (16) by replacing I, I, K, and K, by their asymptotic values for large arguments:

X

107 Il(x) = (an 3

Ko K,y (%) = (%) e (19)

(x> 1)

With these substitutions and a slight redefinition of coefficients in equations (A1-A8), the
dispersion determinant becomes the same as that given by Jones [21] for the plane two-
layered problem. As would be expected, the waves degenerate into two Rayleigh surface
waves, one in each medium, and a possible Stoneley wave at the interface.

For wavelengths of intermediate size it is difficult to extract much information about
the character of the possible wave propagation solutions except by considering specific
numerical examples. This is done in the following section where the results of the numerical
example are also used to check the accuracy of the shell theory given in [1].

3. COMPUTATIONS

In order to investigate the character of the wave propagation solutions governed by
equations (A1-A8) numerical analysis was employed. A program for the IBM 7094 com-
puter was developed at the Aerospace Corporation for determining phase velocities (and
from them, frequencies) satisfying equation (16). To facilitate the use of the present solution
for assessing the range of validity of approximate shell theories, displacement and stress
distributions through the cylinder thickness are calculated as well.

For a given numerical problem valid computer results are obtained only for a limited
range of wavelengths. The largest number available for routine calculation is 10°® ~ exp(88),
while for large wave numbers the I's (modified Bessel functions of the first kind) are of the
order of exp[(kH)(a/H)]. Here H = h,+h, is the total wall thickness of the cylinder.
Thus, for valid computer results, kH cannot be much larger than 88(H/a). In the example
to be considered here a/H is 30 so that kH < 3 gives a fair estimate of the range amenable
to computations based on equation (16). For larger values of kH the wavelength is short
compared to the radius of the cylinder, the asymptotic expressions of equation (19) are
appropriate, and satisfactory numerical results are obtained using a computer program
based on the plane medium equations of [21].

Due to the large number of parameters associated with this problem, a complete
parametric study is beyond the scope of this work. Consequently, a specific numerical
example was chosen for study: The numerical values are those which arose in connection
with a study of vulnerability of a hypothetical reentry vehicle. Properties of the cylinder
chosen for detailed numerical study are given in Table 1. This example was also used to
check the validity of the approximate shell theory of [1] where dispersion curves were com-
pared for low frequencies and large wavelengths. Dispersion curves are presented here for
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the first nine modes of axially symmetric wave propagation. Distributions of displacements
and stresses through the thickness of the cylinder are also presented, and for the first four
modes these are compared with the distributions predicted by the approximate shell theory

(1.

TABLE 1. NUMERICAL PROPERTIES OF THE CYLINDER STUDIED

Properties Outer layer Inner layer

Material constants E, = 400 10°1b/in? E, =300 10°Ib/in?

"=d T (%)286

0-080 - .

oy = —3’8?1b-sec2/in‘ py = Wlb-secz/m“

Geometrical parameters
h h
S _30 Mooz oo (H = hy+hy)
H H H

3.1 Dispersion curves

Dispersion curves for the cylinder of Table 1 appear in Figs. 1 and 2. In both graphs,
the abscissa is nondimensional wave number A = kH. In Fig. 1 the ordinate is nondi-
mensional phase velocity s = ¢/f* = w/kf*, and in Fig. 2 it is nondimensional frequency
Q = wH/B*. The reference velocity f* = (8, + B,)/2.

NONDIMENSIONAL PHASE VELOCITY, s

6 8 10
NONDIMENSIONAL WAVE NUMBER, A
FiG. 1. Phase velocity vs. wave number.

The approach of the phase velocity to various limiting values may be examined in Fig. 1.
For instance, for very long waves, the phase velocity of the first mode approximates that
of “‘bar” waves. Also, for very short waves the phase velocity of the first mode approaches
the Rayleigh wave speed of the slower medium. The occurrence in this first mode curve
of a relative maximum value of phase velocity for an intermediate value of wave number
would appear to be unique to layered media.

For the second and higher modes the phase velocity becomes very large as the wave
number is made smaller. Therefore, the long wavelength behavior of these modes is better
examined in the frequency wave number plot of Fig. 2. In Fig. 2 it is observed that curves
for all the modes except the first have a finite frequency intercept for zero wave number.
These frequencies and the character of the motion for each of the modes are summarized
in Table 2. Other features of the curves presented in Fig. 2 include the relative minimum
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NONDIMENSIONAL FREQUENCY, g

T
S5 ]
1380+ /(
)
1375 L
35 320 325

] l I
0 0 5 10 15 20

NONDIMENSIONAL WAVE NUMBER, A
F16. 2. Frequency vs. wave number.

TABLE 2. CHARACTER OF THE INFINITE WAVELENGTH AXIALLY SYMMETRIC
VIBRATIONS OF THE TWO-LAYERED CYLINDER OF TABLE |

Mode Frequency, Character of motion
1 0 zero nodes, axial motion
2 0066 zero nodes, radial motion, “'ring” vibration
3 3-86 1 node, axial motion, thickness shear
4 580 2 nodes, axial motion, thickness shear
5 707 1 node, radial motion, thickness stretch
6 102 3 nodes, axial motion, thickness shear
7 i1-1 2 nodes, radial motion, thickness stretch
8 131 4 nodes, axial motion, thickness shear
9 159 5 nodes, axial motion, thickness shear

of mode 6 near A = 2-5 (this corresponds to zero group velocity) and the close approach of
modes 7 and 8 near A = 3-1. The inset of Fig. 2 shows this close approach on a magnified
scale.

3.2 Displacements

Displacements and stresses (see next section) are seldom presented. While they were
originally calculated to assess the approximate shell theory of Ref. [1], they are of interest
per se. They are calculated for wave lengths and frequencies well outside the range of any
shell theory and thus provide a valuable insight into the development of the breakdown
of the assumptions of thin shell theory. It is felt that this is a unique feature of the present
work.

In[1]an approximate shell theory is developed and partially compared with the present
exact solutions. Figures 3-7 extend the comparison of displacements over the entire range
of interest. Due to the eigenvalue nature of the problem considered, the absolute magnitudes
of the displacements are undetermined since multiplication by a constant (normalization)
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FIG. 3. First mode displacement distributions.

factor is permissible. Therefore, our comparisons are of the shapes of the displacement
distributions, the magnitude having been adjusted to make the present exact theory and
the shell theory of [1] agree at some convenient value of r. Solution for both theories of a
forced motion problem would permit comparisons of magnitudes as well. However,
examination of the shapes alone of the displacement distributions is of interest since
formulations of higher order shell theories generally postulate functional forms for the
dependence of the displacements on the thickness coordinate.

For the present comparisons the axial displacements have been normalized to make
exact theory and shell theory displacements equal to one at the outer surface. This normali-
zation, of course, fixes definite ratios between the radial displacements of the two theories
at every location in the shell (except in the case of infinite wavelength where axial and radial
motion are uncoupled). The radial displacements need nowhere be equal. Rather than pre-
sent them in such a form we have taken the liberty of introducing a different normalization
of the radial displacements. The radial displacements from both theories are made equal
to one at the outer surface. Such a normalization is necessary for uncoupled radial motion,
and moreover it permits the use of a uniform scale for nearly all the radial displacement
plots. The information suppressed by this normalization convention, that is, the ratio of
the maximum outer surface radial displacement to maximum outer surface axial displace-
ment, is presented in Table 3.

In {1] the first mode axial and radial displacements (as well as the dispersion curves)
were compared for a limited range of A < 3-0. Figure 3 extends this comparison up to
A = 9-0. Since several curves for 0 < A < 3-0 were presented in Ref. [1], the curves in Fig. 3
start at A = 5-0. Further, for A < 3-0, there is little variation of radial displacement through
the thickness, and the axial displacement differs little from the bi-linear distribution assumed
in the shell theory. Starting at A = 50 the nonuniformity of radial displacement begins to
become pronounced, and the axial displacement becomes increasingly nonlinear.

Previous analyses [1,21] show that as the wave number becomes increasingly large
the first mode decays from a flexural mode into a Rayleigh wave in the slower medium. It is
apparent in the curves for A = 9-0 that this transition is nearly complete : the motion is



668 J. S. WHITTIER and J. P, JONES

TABLE 3. RATIOS OF OUTER SURFACE MAXIMUM RADIAL DISPLACE-
MENT TO OUTER SURFACE MAXIMUM AXIAL DISPLACEMENT

Displacement ratio

Mode Wave number, A Exact theory  Shell theory

5 1-089 1-370

1 7 1-460 1-531
9 1-630 1-739
0 20 0

2 1 —-0277 —-00165
3 —2:621 —0-045
0 0 0

3 1 —0-1025 —0-0467
3 - 00428 —00521
0 0 0

4 1 0-522 00277
3 1-886 0-0962
0 X —

5 1 — 1196 —
3 —21-50 -

concentrated almost entirely in the outer medium. One might expect certain of the displace-
ment plots to exhibit other surface or interface waves. However, with the parameters used
for these two media, calculations show that Stoneley waves do not exist at the interface
([19], p. 113). Theory predicts that for sufficiently high wave numbers a Rayleigh wave will
form in the faster (inner) medium. Such a wave is manifested in a more complicated way
called *‘terracing,” [22] and its consideration would require investigation of a larger range
of A than has been undertaken for the present work.
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Fi1G. 4. Second mode displacement distributions.

Figure 4 shows the second mode displacements for A = 0, 1, and 3. For A = 0, the
motion is totally radial, and no plot of axial displacements is necessary. In contrast to the
first mode, the displacement curves degenerate from the shell theory quite rapidly with a
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phase reversal in the radial displacement already apparent at A = 1-0. By A = 3-0 the
nonlinearity of the curves is pronounced. They are totally different from those of the shell
theory. The radial displacement curves for both A = 1-0 and 3-0 are evidence that con-
siderable thickness-stretch deformation is present.

Figures 5 and 6 show the displacements for the third and fourth modes. They are pre-
dominantly thickness-shear modes. At A = 0the motion is purely axial ; therefore no radial
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displacement plots appear. In both figures, the predictions from shell theory compare quite
well with the exact solution, at least for the axial displacements. As in the second mode
there is sufficient thickness-stretch motion present to cause the appearance of nodes in
most of the radial displacement plots. Note in Fig. 5 that the radial displacements for
A = 3 are plotted to a different scale than the rest.
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Figure 7 shows the displacements for the fifth mode, the first mode not predicted by
shell theory. At A = 0 the motion is purely radial or thickness-stretch. At least for small
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FiG. 7. Fifth mode displacement distributions.

wave number the shapes of the radial displacement curves are such that a linear distribution
might offer a good approximation. Thus, a higher order shell theory admitting a linear
distribution of radial displacements might give fair results for the long wavelength portion
of the fifth mode. Such a shell theory has been presented by Mirsky [23] for a single-layer
cylindrical shell. Resuming the examination of Fig. 7 one sees that for finite wave numbers
axial motion is present in a form that resembles double-node thickness shear. However,
the axial motion shows little tendency toward linearity, indicating that (the same as in the
lower modes) a shell theory with linear axial displacement variation through the thickness
will probably not give a reasonable approximation for larger wave numbers.

In summary the comparisons of the displacements for the four lowest modes shows that
the second mode yields the poorest comparison between exact and shell theory. Although
this result is surprising, it could have been anticipated since the second mode dispersion
curve deviates more from that predicted by shell theory for lower values of A than for the
other modes. It would appear that the incorporation of thickness-stretch deformations is
the next essential step in improving the shell theory for high frequency, short wavelength
use.

3.3 Stresses

Figures 8-11 describe the axial stress (0,,) and the shear stress (o,,) distributions. As
with the displacements the absolute magnitude of the stresses cannot be determined. The
stresses from both the exact and shell theories were normalized so that the greatest axial
stress at the outer edges or at the interface was set equal to either + 1-0. This also fixes the
magnitudes of the shear stresses.

Figures 8 and 9 show, respectively, the first mode axial and shear stresses. It is seen in
Fig. 8 that for A < 3 there is good agreement with the shell theory. However, as A increases
the agreement deteriorates. By A = 7 there is only fair agreement, and by A = 9 there is
almost none. The latter point is confirmed by the previous observation that by A = 9 there
is a Rayleigh wave formed in the outer medium. Figure 9 is probably of more interest since
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FIG. 8. First mode axial stress distributions.

%}
0"_A-| L A=2 F4a=3
0
e [ N L #
"L C i
- | L [}
L | \
C [ AN
-0 11 L1 1 1111 111 RN [N
o7y | -1 ] -l 0 !
SHEAR STRESS
s La=7 Fa=9 /7
c— I " r ya
o [/ L N \
A4 ! C \
- 1 \ - \
ANY AR L \
P U B e S | P\
'-1 0 [ 0 ) - 0
SHEAR STRESS
SHELL THEORY ~ —=—=——ELASTICITY THEORY

F1G. 9. First mode shear stress distributions.

an expected mode of failure of multilayered shells is in shear failure of the bond. The shear
stress distribution follows roughly the same pattern as the axial stresses, being close to the
shell theory for A < 5 and being totally different by A = 9.

Figure 10 shows the second mode stresses. As might be expected there is not as good an
agreement as with the first mode. By A = 3-0 the shell theory stress distributions are begin-
ning to diverge sharply from the exact ones.

Figure 11 shows third mode stress distributions. There is good agreement with shell
theory only for A < 1. By A = 2 there is considerable divergence in the stresses, and by
A = 3 the exact theory curves bear little resemblance in shape to those from the shell theory.
The fourth mode curves, while not presented, show a pattern similar to the third mode.
It is worth noting that although the stress comparison plots are useful for illustrating
qualitative differences between the theories the quantitative interpretation can be quite
sensitive to the particular normalization convention that is adopted.



672 J. S. WHITTIER and J. P. JONES

°“-A=|l La-2 i a3
0
o |
H s
E\
A \)
Qe L1 I L L [ L1l
- 0 |- 0 |-l 0 |
AXIAL STRESS
3 (a2 23 /
0" B r !
1
ra T C Y
Rl C b
L I - ]
_0.7_ RSN B Coi1 L IR S
- 0 [ 0 I -l (V] |

SHEAR STRESS
——— SHELL THEORY ———~ELASTICITY THEORY

FiG. 10. Second mode stress distributions.

03 Y n N N -
o; \k BN i
RS L ~ L T o
C \ T N ~8
- « L ~ - \
C ~ B s | E \
- \ L A /
[ N L r ’
_07 1 Lt 1) il J) B | i
-l 0 |-l 0 [ -10 0
AXIAL STRESS
0-
Fai - a2 - ae3
Ve -7 L 7
oF—~ { i
[ o\ E N\
I NN AN AN
— \\ - \\ ~ AY
L L A N \
_0, ) I A1 11 11 A L] . |
7 -l 0 -l 0 1 -0 0 10
SHEAR STRESS
——— SHELL THEQRY —-———ELASTICITY THEORY

FiG. 11. Third mode stress distributions.

In conclusion it is felt that if any shell theory is to be improved by the introduction of
more dependent variables, thickness-stretch motion is essential. For still higher modes to
yield agreement it would be necessary to add additional shear deformations corresponding
to warping of initially plane cross sections.

4. CONCLUSIONS

The observations presented here on the dynamics of a two-layered cylinder are specifi-
cally pertinent to axially symmetric motions of a relatively thin-walled cylinder. The equa-
tions, however, are in no way restricted to shell-like geometry. The observations are also
pertinent to the shell theory of [1] insofar as it is in agreement with the exact theory.

In many respects the results are similar to those for a homogeneous hollow cylinder.
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In the lowest mode very long waves propagate with a finite phase velocity. (To the scale
used in Fig. 1 this may not be immediately evident). Infinite wavelength vibrations in the
second mode occur with a finite cutoff frequency corresponding to purely radial vibrations
of the cylinder. Cutoff frequencies for the higher modes correspond to simple thickness-
shear or thickness-stretch vibrations. For small enough wavelengths and/or for the higher
modes a good description of the motion is obtained using the simpler equations for the
propagation of straight crested waves in a plane medium of the same thickness.

However, unlike a homogeneous hollow cylinder a two-layered cylinder does not have
equal surface wave velocities at its inner and outer surfaces. When the slower layer is much
thinner this leads to a relative maximum at intermediate wavelength of the first mode phase
velocity vs. wave number curve. For larger wave numbers the phase velocity is decreasing,
and it thus approaches from above the Rayleigh wave velocity of the slower medium. This
character of the phase velocity dispersion relation is not matched even qualitatively by a
Timoshenko-type shell theory. Presumably duplication of this behavior would require a
higher order shell theory accommodating cross section distortions such that initially plane
cross sections of either layer no longer remain plane in the deformer shell.

Some further conclusions pertinent to the development of higher order shell theories
are in order. The displacement and stress distributions presented here reinforce the con-
clusion that good results are obtained by incorporating shear deformation individually in
each layer such as was done in [1]. Also it appears that if one desired to extend the range of
applicability of the theory of [1] by adding more dependent variables, the next logical
step would be incorporation of thickness-stretch deformation individually in each layer.
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APPENDIX
EXPRESSIONS FOR BOUNDARY CONDITIONS

Equations resulting from the satisfaction of free surface and interface boundary con-
ditions, equations (15), appear in this Appendix ; they are:

AP, +B,Q,+C,R;,+D§,, =0 (A1)
A, T,,-B, U +C V;{-D,W,;, =0 (A2)
AypPiog+Bip Q10+ CipyRyg+D Sy A3

= AspaPyo+ B311,Q50+ CaiaRog+ Dopta 10
Ay Tio— By U o+ C o Vig— D p Wi Ad)

= Axpta Tho— By U+ Copin Voo — Dot W
Ae 1 (keya)— B, K (ke a)+ C,3,1,(kd,a)— D ,6,K (kd,a) (45)

= A,e,1(ke a)— Byey K (kesa)+ C,6,14(kd,a)— D,0,K (kd,a)
A Iy(ke @)+ B Kolke,a)+ C 621 (kd a)+ D 62K o(kd,a) (A6)
= A,l(ke,a)+ B, K o(ke,a)+ C,051o(kd,a) + D163 K o(kda)

Ay:P+B50,,+C3R,,+D,8,, =0 (A7)
A, T,,—B,U,, +C,V,,— D, W, =0 (A8)

where the lengthier combinations of Bessel functions have been abbreviated according
to the following

F;=( +5i2)10(k8;a)—23fu@
kea
K (ke;
0y = (1 + 5K olkeia) + 267 0 r?)
ke;a
3 1 (ké,a)
R, = 257 [Io(koia)_JW]
O,
: ké,a

T;; = 2¢.d (kesa)
U;; = 2eK (keja)
Vi = 641+ D)1, (ké;a)
W, = o{1+ 6})K (kda)
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where i takes on values 1 and 2. The subscript j takes on values 1, 0, and 2, which corres-
ponds to multiplying the arguments by 1+4,, 1, and 1—4,, respectively; e.g.

I,[kepu(1+A,)]
w = (U odlolkea(l +41)] =26 == = et

Here A, = (h,/a) and i, = (h,/a).

(Received 13 May 1966 ; revised 3 October 1966)

Résumé—La théorie linéaire d’élasticité est employée pour investiguer des propagations d’ondes axialement
symmetriques dans un cylindre 3 deux couches d’une longueur infinie. Chaque matiére est supposée étre homogéne
et isotrope. Un lien parfait est assumé a Pinterface alors que les limites intérieures et extérieures du cylindre
composite sont traitées comme libres de traction. Le déterminant de dispersion relatant la vélocité de phase et le
nombre d’ondes pour un train d’ondes harmoniques satisfaisant ces conditions de limite est présenté. Le caractere
de I’équation de dispersion est investigué analytiquement et numériquement. Les distributions de contrainte et
de déplacement sont également présentées pour ’exemple numérique. Des comparisons sont faites avec une
solution approximative du méme probléme obtenue au moyen d’une théorie de couche fine incorporant une
déformation de cisaillement-épaisseur de chaque couche.

Zusammenfassung—Die lineare Elastizititstheorie wird angewandt zur Untersuchung der drehsymmetrischen
Welien-Ausbreitung in einem doppelschichtig unendlichen Zylinder. Jedes Material wird als homogen und isotrop
vorausgesetzt. Tadellose Verbindungen der Grenzflichen werden vorausgesetzt; wihrend die inneren und dusseren
Grenzen des zusammengesetzten Zylinders als kraftfrei behandelt werden. Die Streuungs-Determinante, die
Phasengeschwindigkeit und Wellennummer einer harmonischen Wellenreihe darstellt und die Grenzbedingungen
erfiillt wird gegeben. Die Streuungsgleichung wird analytisch und numerisch untersucht. Die Verteilung von
Spannung und Verschiebung werden auch gegeben, fiir das numerische Beispiel. Die Resultate werden mit den
Resultaten verglichen die erhalten werden wenn man die Diinnwandtheorie anwendet und die Verformungen
durch Dicke-Scherung beriicksichtigt.

A6ctpakT—IIpuMenseTcs nHHeHHAsA TEOPHA TMACTHYHOCTH AJNA UCCIIENOBAHHUA CHMMETPUYECKOTO OTHOCH-
TEABHO OCH PacOpOCTPAHEHHS] BONHBEI B OECKOHEWHO NJIMHHOM ABYCIOWHOM HMaHHApe. Cuutaercs,
YTO XaXAbii MaTepHal TOMOTEHEH M H30TponeH. CBA3b Yy MOBEPXHOCTM pa3fiefla TPHMHMMAaeTcs, Kak
MAcalibHas, B TO BPEMs, KAK BHYTPEHHHE M BHEILHHE JIMHUH Pa3feNia COCTABHOTO HUMIMHAPA CYUTAIOTCS
THIWEHHBIMK CHIT CUETUIEHHsA. [la€Tca onpenenuTeNlb PacCesiHUsl CKOPOCTH OTHOCHTEIBHOM (a3bl U YHCIIO
BOJHBI [UIA TAPMOHHMYECKOTO COCTaBa BOJIH, YAOBJICTBOPAIOLUMX 3THM IDaHMYHBIM YCITIOBHAM. XapakTtep
YPaBHEHHS PACCESHUS HCCNEAYETCA AHANUTHYECKH U YHCNIEHHO. sl YHCIIEHHOTO MpHMepa AAIOTCA TAKKe
paclpeficneHHs HANPSKEHUA W cMelleHus. CaenaHbl CPaBHEHUs C NPHONN3UTENBHBIM PELLIEHHEM TOR Xe
camoli npobnemel, MOy4EHHBIM MOCPEACTBOM TEOPHH TOHKOM O0OIOYKH, BKMIOYarollel IedopMauuio
TOJILMHBI-CABUra KaXa0ro CIof.



